Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394930

RESUMO

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Assuntos
Parasitos , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/química , Trypanosoma brucei rhodesiense , Guanidina/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Guanidinas/farmacologia , Metabolismo Energético , Mamíferos
2.
J Nat Prod ; 87(4): 849-854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416027

RESUMO

Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3-12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1-12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 µM against Plasmodium falciparum 3D7 (drug-sensitive) strain.


Assuntos
Alcaloides , Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Eremophila (Planta)/química , Cristalografia por Raios X , Quinolinas/farmacologia , Quinolinas/química , Raízes de Plantas/química , Éteres/farmacologia , Éteres/química
3.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248658

RESUMO

The known oxygenated polyhalogenated diphenyl ether, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted to generate 12 ether analogues in low-to-excellent yields, and the new library was fully characterized by NMR, UV, and MS analyses. The chemical structures for 2, 8, and 9 were additionally determined via single-crystal X-ray diffraction analysis. All natural and semisynthetic compounds were evaluated for their ability to inhibit the growth of DU145, LNCaP, MCF-7, and MDA-MB-231 cancer cell lines. Compound 3 was shown to have near-equivalent activity compared to scaffold 1 in two in vitro assays, and the activity of the compounds with an additional benzyl ring appeared to be reliant on the presence and position of additional halogens.


Assuntos
Antineoplásicos , Éter , Éteres/farmacologia , Etil-Éteres , Éteres Fenílicos/farmacologia , Antineoplásicos/farmacologia
4.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091406

RESUMO

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Assuntos
Leishmaniose Visceral , Leishmaniose , Ratos , Animais , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Modelos Animais de Doenças
5.
Artigo em Inglês | MEDLINE | ID: mdl-37776606

RESUMO

Giardia duodenalis is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for Giardia currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-Giardia activity, identifying three compounds with sub-µM activity and promising selectivity. Here we extended these studies by examining the anti-Giardia activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC50 1.2 µM) and selectivity demonstrated by representative compound, SN00798525 (1). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-Giardia activity, including 2 which displayed potent cytocidal (IC50 ≤ 10 nM) and selective activity against multiple Giardia strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that 2 is well-tolerated, does not impact the normal gut microbiota and can reduce Giardia parasite burden in these animals.


Assuntos
Giardia lamblia , Giardíase , Parasitos , Humanos , Animais , Camundongos , Giardíase/tratamento farmacológico , Giardíase/veterinária , Giardíase/parasitologia , Giardia , Metronidazol/uso terapêutico , Fezes/parasitologia
6.
J Nat Prod ; 86(9): 2216-2227, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37609780

RESUMO

Six new thiazole-containing cyclic peptides, the cyclotheonellazoles D-I (1-6), were isolated from the Australian marine sponge Theonella sp. (2131) with their structures assigned by comprehensive 1D and 2D NMR spectroscopic and MS spectrometric analyses, Marfey's derivatization studies, and comparison with time-dependent density functional theory (TDDFT) calculated ECD data. The Type 2 azole-homologated peptides herein comprise up to five nonproteinogenic amino acids, including the protease transition state mimic α-keto-ß-amino acid residue 3-amino-4-methyl-2-oxohexanoic acid (Amoha), while 1-3 also contain a terminal hydantoin residue not previously found in cyclotheonellazoles. The keramamides A (7) and L (8) were reisolated affording expanded exploration of their biological activities. The peptides were examined for protease inhibitory activities against two mammalian serine proteases (elastase and chymotrypsin) and SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), a validated antiviral therapeutic target for COVID-19. Peptides 1-6 and keramamide A (7) displayed potent nanomolar inhibition of elastase (IC50 16.0 to 61.8 nM), while 7 also contained modest inhibition of chymotrypsin and SARS-CoV-2 3CLpro (IC50 0.73 and 1.1 µM, respectively). The cyclotheonellazoles D-E (1-3) do not affect the viability of human breast, ovarian, and colon cancer cells (>100 µM), with the cytotoxicity previously reported for keramamide L (8) not replicated (inactive >20 µM).


Assuntos
COVID-19 , Theonella , Animais , Humanos , Peptídeos Cíclicos/química , Theonella/química , Tiazóis/farmacologia , Elastase Pancreática , Quimotripsina , Estrutura Molecular , Austrália , SARS-CoV-2 , Peptídeos/química , Aminoácidos/química , Mamíferos
7.
J Nat Prod ; 86(9): 2171-2184, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37610242

RESUMO

Amyloid protein aggregates are linked to the progression of neurodegenerative conditions and may play a role in life stages of Plasmodium falciparum, the parasite responsible for malaria. We hypothesize that amyloid protein aggregation inhibitors may show antiplasmodial activity and vice versa. To test this hypothesis, we screened antiplasmodial active extracts from 25 Australian eucalypt flowers using a binding affinity mass spectrometry assay to identify molecules that bind to the Parkinson's disease-implicated protein α-syn. Myrtucommulone P (1) from a flower extract of Eucalyptus cloeziana was shown to have α-syn affinity and antiplasmodial activity and to inhibit α-syn aggregation. 1 exists as a mixture of four interconverting rotamers. Assignment of the NMR resonances of all four rotamers allowed us to define the relative configuration, conformations, and ratios of rotamers in solution. Four additional new compounds, cloeziones A-C (2-4) and cloeperoxide (5), along with three known compounds were also isolated from E. cloeziana. The structures of all compounds were elucidated using HRMS and NMR analysis, and the absolute configurations for 2-4 were determined by comparison of TDDFT-calculated and experimental ECD data. Compounds 1-3 displayed antiplasmodial activities between IC50 6.6 and 16 µM. The α-syn inhibitory and antiplasmodial activity of myrtucommulone P (1) supports the hypothesized link between antiamyloidogenic and antiplasmodial activity.


Assuntos
Antimaláricos , Eucalyptus , Antimaláricos/farmacologia , Árvores , alfa-Sinucleína , Extratos Vegetais/química , Austrália , Plasmodium falciparum
8.
Trends Parasitol ; 39(9): 718-719, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500332

RESUMO

High-content imaging has produced greater insights into the complexities of cell biology. The ability to characterise specific phenotypes, as demonstrated by Rosenthal and Ng, provides a powerful tool for elucidating mechanisms of action and resistance, illustrating that high-content imaging in malaria research is only limited by our creativity.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Malária/tratamento farmacológico
9.
Biology (Basel) ; 12(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372146

RESUMO

A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. It is the aim of the current study to establish a biologically relevant 3D in vitro model that mimics the cellular and molecular profiles of MAFs found in vivo. Using 3D in vitro cell culture models, the bone-derived fibroblast cell line, HS-5, was treated with conditioned media from metastatic-derived PCa cell lines, PC3 and MDA-PCa 2b, or mouse-derived fibroblasts 3T3. Two corresponding reactive cell lines were propagated: HS5-PC3 and HS5-MDA, and evaluated for alterations in morphology, phenotype, cellular behaviour, plus protein and genomic profiles. HS5-PC3 and HS5-MDA displayed distinct alterations in expression levels of N-Cadherin, non-functional E-Cadherin, alpha-smooth muscle actin (α-SMA), Tenascin C, and vimentin, along with transforming growth factor receptor expression (TGF ß R1 and R2), consistent with subpopulations of MAFs reported in vivo. Transcriptomic analysis revealed a reversion of HS5-PC3 towards a metastatic phenotype with an upregulation in pathways known to regulate cancer invasion, proliferation, and angiogenesis. The exploitation of these engineered 3D models could help further unravel the novel biology regulating metastatic growth and the role fibroblasts play in the colonisation process.

10.
J Nat Prod ; 86(5): 1317-1334, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37171174

RESUMO

NMR fingerprints provide powerful tools to identify natural products in complex mixtures. Principal component analysis and machine learning using 1H and 13C NMR data, alongside structural information from 180 published formyl phloroglucinols, have generated diagnostic NMR fingerprints to categorize subclasses within this group. This resulted in the reassignment of 167 NMR chemical shifts ascribed to 44 compounds. Three pyrano-diformyl phloroglucinols, euglobal In-1 and psiguadiols E and G, contained 1H and 13C NMR data inconsistent with their predicted phloroglucinol subclass. Subsequent reinterpretation of their 2D NMR data combined with DFT 13C NMR chemical shift and ECD calculations led to their structure revisions. Direct covariance processing of HMBC data permitted 1H resonances for individual compounds in mixtures to be associated, and analysis of their 1H/13C HMBC correlations using the fingerprint tool further classified components into phloroglucinol subclasses. NMR fingerprinting HMBC data obtained for six eucalypt flower extracts identified three subclasses of pyrano-acyl-formyl phloroglucinols from Eucalyptus gittinsii subsp. gittinsii. New, eucalteretial F and (+)-eucalteretial B, and known, (-)-euglobal VII and eucalrobusone C, compounds, each belonging to predicted subclasses, were isolated and characterized. Staphylococcus aureus and Plasmodium falciparum screening revealed eucalrobusone C as the most potent antiplasmodial formyl phloroglucinol to date.


Assuntos
Eucalyptus , Eucalyptus/química , Floroglucinol/química , Folhas de Planta/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Estrutura Molecular
11.
Mar Drugs ; 21(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37233511

RESUMO

The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised Boc-protected thiaplakortone A (2) as a scaffold for late-stage functionalisation. The new thiaplakortone A analogues (3-11) were generated using N-bromosuccinimide, N-iodosuccinimide or a Diversinate™ reagent. The chemical structures of all new analogues were fully characterised by 1D/2D NMR, UV, IR and MS data analyses. All compounds were evaluated for their antimalarial activity against Plasmodium falciparum 3D7 (drug-sensitive) and Dd2 (drug-resistant) strains. Incorporation of halogens at positions 2 and 7 of the thiaplakortone A scaffold was shown to reduce antimalarial activity compared to the natural product. Of the new compounds, the mono-brominated analogue (compound 5) displayed the best antimalarial activity with IC50 values of 0.559 and 0.058 µM against P. falciparum 3D7 and Dd2, respectively, with minimal toxicity against a human cell line (HEK293) observed at 80 µM. Of note, the majority of the halogenated compounds showed greater efficacy against the P. falciparum drug-resistant strain.


Assuntos
Antimaláricos , Produtos Biológicos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Células HEK293 , Triazinas/química , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Produtos Biológicos/química
12.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36799121

RESUMO

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Assuntos
Anti-Infecciosos , Antimaláricos , Produtos Biológicos , Carbamatos , Extratos Vegetais/química , Antimaláricos/farmacologia , Antimaláricos/química , Produtos Biológicos/química , Plasmodium falciparum
13.
Microorganisms ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838441

RESUMO

Chagas disease is caused by infection with the protozoan parasite, Trypanosoma cruzi. The disease causes ~12,000 deaths annually and is one of the world's 20 neglected tropical diseases, as defined by the World Health Organisation. The drug discovery pipeline for Chagas disease currently has few new clinical candidates, with high attrition rates an ongoing issue. To determine if the Trypanosoma cruzi strain utilised to assess in vitro compound activity impacts activity, a comparison of laboratory-adapted T. cruzi strains from differing geographical locations was undertaken for a selection of compounds with anti-T. cruzi activity. To minimise the possible effect of differences in experimental methodology, the same host cell and multiplicity of infection were utilised. To determine whether the compound exposure time influenced results, activity was determined following exposure for 48 and 72 h of incubation. To ascertain whether replication rates affected outcomes, comparative rates of replication of the T. cruzi strains were investigated, using the nucleoside analogue, 5-ethynyl-2'-deoxyuridine. Minimal differences in the in vitro activity of compounds between strains were observed following 48 h incubation, whereas significant differences were observed following 72 h incubation, in particular for the cytochrome P450 inhibitors tested and the cell cycle inhibitor, camptothecin. Thus, the use of panels of laboratory adapted strains in vitro may be dependent on the speed of action that is prioritised. For the identification of fast-acting compounds, an initial shorter duration assay using a single strain may be used. A longer incubation to identify compound activity may alternatively require profiling of compounds against multiple T. cruzi strains.

14.
Beilstein J Org Chem ; 19: 107-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761470

RESUMO

Nine new fluorinated analogues were synthesised by late-stage functionalisation using Diversinate™ chemistry on the Open Source Malaria (OSM) triazolopyrazine scaffold (Series 4). The structures of all analogues were fully characterised by NMR, UV and MS data analysis; three triazolopyrazines were confirmed by X-ray crystal structure analysis. The inhibitory activity of all compounds against the growth of the malaria parasite Plasmodium falciparum (3D7 and Dd2 strains) and the cytotoxicity against a human embryonic kidney (HEK293) cell line were tested. Some of the compounds demonstrated moderate antimalarial activity with IC50 values ranging from 0.2 to >80 µM; none of the compounds displayed any cytotoxicity against HEK293 cells at 80 µM. Antimalarial activity was significantly reduced when C-8 of the triazolopyrazine scaffold was substituted with CF3 and CF2H moieties, whereas incorporation of a CF2Me group at the same position completely abolished antiplasmodial effects.

15.
Microbiol Spectr ; 10(5): e0128221, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094220

RESUMO

The ring-stage survival assay was utilized to assess the impact of physiological hyperoxic stress on dihydroartemisinin (DHA) tolerance for a panel of Plasmodium falciparum strains with and without Kelch13 mutations. Strains without naturally acquired Kelch13 mutations or the postulated genetic background associated with delayed parasite clearance time demonstrated reduced proliferation under hyperoxic conditions in the subsequent proliferation cycle. Dihydroartemisinin tolerance in three isolates with naturally acquired Kelch13 mutations but not two genetically manipulated laboratory strains was modulated by in vitro hyperoxic stress exposure of early-ring-stage parasites in the cycle before drug exposure. Reduced parasite tolerance to additional derivatives, including artemisinin, artesunate, and OZ277, was observed within the second proliferation cycle. OZ439 and epoxomicin completely prevented parasite survival under both hyperoxia and normoxic in vitro culture conditions, highlighting the unique relationship between DHA tolerance and Kelch13 mutation-associated genetic background. IMPORTANCE Artemisinin-based combination therapy (ACT) for treating malaria is under intense scrutiny following treatment failures in the Greater Mekong subregion of Asia. This is further compounded by the potential for extensive loss of life if treatment failures extend to the African continent. Although Plasmodium falciparum has become resistant to all antimalarial drugs, artemisinin "resistance" does not present in the same way as resistance to other antimalarial drugs. Instead, a partial resistance or tolerance is demonstrated, associated with the parasite's genetic profile and linked to a molecular marker referred to as K13. It is suggested that parasites may have adapted to drug treatment, as well as the presence of underlying population health issues such as hemoglobinopathies, and/or environmental pressures, resulting in parasite tolerance to ACT. Understanding parasite evolution and control of artemisinin tolerance will provide innovative approaches to mitigate the development of artemisinin tolerance and thereby artemisinin-based drug treatment failure and loss of life globally to malaria infections.


Assuntos
Antimaláricos , Artemisininas , Hiperóxia , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Hiperóxia/tratamento farmacológico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/farmacologia , Proteínas de Protozoários/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Tolerância a Medicamentos , Malária Falciparum/tratamento farmacológico
16.
J Med Chem ; 65(19): 13125-13142, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111399

RESUMO

Tuberculosis and parasitic infections continue to impose a significant threat to global public health and economic growth. There is an urgent need to develop new treatments to combat these diseases. Here, we report the in vitro and in vivo profiles of a new bicyclic nitroimidazole subclass, namely, nitroimidazopyrazinones, against mycobacteria and Trypanosoma cruzi. Derivatives with monocyclic side chains were selective against Mycobacterium tuberculosis and were able to reduce the bacterial load when dosed orally in mice. We demonstrated that deazaflavin-dependent nitroreductase (Ddn) could act effectively on nitroimidazopyrazinones, indicating the potential of Ddn as an activating enzyme for these new compounds in M. tuberculosis. Oral administration of compounds with extended biaryl side chains (73 and 74) was effective in suppressing infection in an acute T. cruzi-infected murine model. These findings demonstrate that active nitroimidazopyrazinones have potential to be developed as orally available clinical candidates against both tuberculosis and Chagas disease.


Assuntos
Doença de Chagas , Mycobacterium tuberculosis , Nitroimidazóis , Trypanosoma cruzi , Tuberculose , Animais , Doença de Chagas/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Nitrorredutases , Tuberculose/tratamento farmacológico
17.
Microorganisms ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35889006

RESUMO

Chagas disease caused by the protozoan Trypanosoma cruzi is endemic to 21 countries in the Americas, effects approximately 6 million people and on average results in 12,000 deaths annually. Human African Trypanosomiasis (HAT) is caused by the Trypanosoma brucei sub-species, endemic to 36 countries within sub-Saharan Africa. Treatment regimens for these parasitic diseases are complicated and not effective against all disease stages; thus, there is a need to find improved treatments. To identify new molecules for the drug discovery pipelines for these diseases, we have utilised in vitro assays to identify compounds with selective activity against both T. cruzi and T.b. brucei from the Medicines for Malaria Venture (MMV) Pathogen Box compound collection. To prioritise these molecules for further investigation, temporal and wash off assays were utilised to identify the speed of action and cidality of compounds. For translational relevance, compounds were tested against clinically relevant T.b. brucei subspecies. Compounds with activity against T. cruzi cytochrome P450 (TcCYP51) have not previously been successful in clinical trials for chronic Chagas disease; thus, to deprioritise compounds with this activity, they were tested against recombinant TcCYP51. Compounds with biological profiles warranting progression offer important tools for drug and target development against kinetoplastids.

18.
J Nat Prod ; 85(2): 441-452, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35050597

RESUMO

Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides D-I (4-9) and cis-prunolide C (10), a new dibrominated ß-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides A-C (1-3) were isolated from the Australian colonial ascidian Synoicum prunum. The prunolides D-G (4-7) represent the first asymmetrically brominated prunolides, while cis-prunolide C (10) is the first reported with a cis-configuration about the prunolide's bis-spiroketal core. The prunolides displayed binding activities with the Parkinson's disease-implicated amyloid protein α-synuclein in a mass spectrometry binding assay, while the prunolides (1-5 and 10) were found to significantly inhibit the aggregation (>89.0%) of α-synuclein in a ThT amyloid dye assay. The prunolides A-C (1-3) were also tested for inhibition of pSyn aggregate formation in a primary embryonic mouse midbrain dopamine neuron model with prunolide B (2) displaying statistically significant inhibitory activity at 0.5 µM. The antiplasmodial and antibacterial activities of the isolates were also examined with prunolide C (3) displaying only weak activity against the 3D7 parasite strain of Plasmodium falciparum. Our findings reported herein suggest that the prunolides could provide a novel scaffold for the exploration of future therapeutics aimed at inhibiting amyloid protein aggregation and the treatment of numerous neurodegenerative diseases.


Assuntos
Urocordados , alfa-Sinucleína , Animais , Austrália , Carbolinas , Camundongos , Ácidos Sulfônicos , Urocordados/química
19.
Expert Opin Drug Discov ; 17(2): 151-166, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34818139

RESUMO

INTRODUCTION: Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED: The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION: It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Visceral , Leishmaniose , Antiprotozoários/farmacologia , Descoberta de Drogas/métodos , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Leishmaniose Visceral/tratamento farmacológico
20.
Bioorg Chem ; 117: 105359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689083

RESUMO

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Aminação , Compostos de Anilina/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Feminino , Humanos , Malária/parasitologia , Camundongos , Plasmodium/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Quinazolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...